Custom Methods for DimStack

The package provides and aims to implement custom methods to handle the DimStack data type originally in DimensionalData.jl.

Data Selection

The package partially overwrites the getindex method for the DimStack data type. Supposed that you have the following visds::DimStack data, which is a radio-astronomy interferometric data set loaded by EHTUVData.jl.

julia> visds
DimStack with dimensions: 
  Dim{:ch} Sampled{Int64} Int64[1] ForwardOrdered Irregular Points,
  Dim{:spw} Sampled{Int64} Int64[1, 2, 3, 4] ForwardOrdered Irregular Points,
  Dim{:data} Sampled{Int64} Int64[1, 2, …, 55997, 55998] ForwardOrdered Irregular Points,
  Dim{:pol} Sampled{Int64} Int64[1, 2, 3, 4] ForwardOrdered Irregular Points
and 20 layers:
  :visibility   ComplexF64 dims: Dim{:ch}, Dim{:spw}, Dim{:data}, Dim{:pol} (1×4×55998×4)
  :sigma        Float64 dims: Dim{:ch}, Dim{:spw}, Dim{:data}, Dim{:pol} (1×4×55998×4)
  :flag         Int8 dims: Dim{:ch}, Dim{:spw}, Dim{:data}, Dim{:pol} (1×4×55998×4)
  :polarization String dims: Dim{:pol} (4)
  :usec         Float64 dims: Dim{:data} (55998)
  :vsec         Float64 dims: Dim{:data} (55998)
  :wsec         Float64 dims: Dim{:data} (55998)
  :mjd          Float64 dims: Dim{:data} (55998)
  :Δmjd         Float64 dims: Dim{:data} (55998)
  :antid1       Int64 dims: Dim{:data} (55998)
  :antid2       Int64 dims: Dim{:data} (55998)
  :scan         Int64 dims: Dim{:data} (55998)
  :νspw         Float64 dims: Dim{:spw} (4)
  :Δνch         Float64 dims: Dim{:spw} (4)
  :sideband     Float64 dims: Dim{:spw} (4)
  :ν            Float64 dims: Dim{:ch}, Dim{:spw} (1×4)
  :u            Float64 dims: Dim{:ch}, Dim{:spw}, Dim{:data} (1×4×55998)
  :v            Float64 dims: Dim{:ch}, Dim{:spw}, Dim{:data} (1×4×55998)
  :w            Float64 dims: Dim{:ch}, Dim{:spw}, Dim{:data} (1×4×55998)
  :uvdist       Float64 dims: Dim{:ch}, Dim{:spw}, Dim{:data} (1×4×55998)

We keep most of the getindex methods from DimensionalData.jl, for instance, you can select a specific DimArray in the DimStack data set by using a key::Symbol.

julia> # selecting `:u` array
julia> u = visds[:u]
1×4×55998 DimArray{Float64,3} u with dimensions: 
  Dim{:ch} Sampled{Int64} Int64[1] ForwardOrdered Irregular Points,
  Dim{:spw} Sampled{Int64} Int64[1, 2, 3, 4] ForwardOrdered Irregular Points,
  Dim{:data} Sampled{Int64} Int64[1, 2, …, 55997, 55998] ForwardOrdered Irregular Points
[:, :, 1]
         1         2     3           4
 1  -96856.7  -97414.4  -1.00311e5  -1.00886e5
[and 55997 more slices...]

julia> # This is not a deepcopy. The slice is programmatically indistinguishable from the original data.
julia> u === visds[:u]
true

This package provides a custom getindex function for the array-index-based data selection useful for slicing. For instance, this visds data set has the following dimensions.

julia> dims(visds)
Dim{:ch} Sampled{Int64} Int64[1] ForwardOrdered Irregular Points,
Dim{:spw} Sampled{Int64} Int64[1, 2, 3, 4] ForwardOrdered Irregular Points,
Dim{:data} Sampled{Int64} Int64[1, 2, …, 55997, 55998] ForwardOrdered Irregular Points,
Dim{:pol} Sampled{Int64} Int64[1, 2, 3, 4] ForwardOrdered Irregular Points

We might want to select data at a specific set of :spw, :polarization and :data columns. This package allows an intuitive data selection similar to python's xarray data set, for instance,

julia> # slicing at :spw = 4, :data=100:10000, :polarization = 2
julia> slice = visds[:, 4, 100:10000, 2]
DimStack with dimensions: 
  Dim{:ch} Sampled{Int64} Int64[1] ForwardOrdered Irregular Points,
  Dim{:spw} Sampled{Int64} Int64[4] ForwardOrdered Irregular Points,
  Dim{:data} Sampled{Int64} Int64[100, 101, …, 9999, 10000] ForwardOrdered Irregular Points,
  Dim{:pol} Sampled{Int64} Int64[2] ForwardOrdered Irregular Points
and 20 layers:
  :visibility   ComplexF64 dims: Dim{:ch}, Dim{:spw}, Dim{:data}, Dim{:pol} (1×1×9901×1)
  :sigma        Float64 dims: Dim{:ch}, Dim{:spw}, Dim{:data}, Dim{:pol} (1×1×9901×1)
  :flag         Int8 dims: Dim{:ch}, Dim{:spw}, Dim{:data}, Dim{:pol} (1×1×9901×1)
  :polarization String dims: Dim{:pol} (1)
  :usec         Float64 dims: Dim{:data} (9901)
  :vsec         Float64 dims: Dim{:data} (9901)
  :wsec         Float64 dims: Dim{:data} (9901)
  :mjd          Float64 dims: Dim{:data} (9901)
  :Δmjd         Float64 dims: Dim{:data} (9901)
  :antid1       Int64 dims: Dim{:data} (9901)
  :antid2       Int64 dims: Dim{:data} (9901)
  :scan         Int64 dims: Dim{:data} (9901)
  :νspw         Float64 dims: Dim{:spw} (1)
  :Δνch         Float64 dims: Dim{:spw} (1)
  :sideband     Float64 dims: Dim{:spw} (1)
  :ν            Float64 dims: Dim{:ch}, Dim{:spw} (1×1)
  :u            Float64 dims: Dim{:ch}, Dim{:spw}, Dim{:data} (1×1×9901)
  :v            Float64 dims: Dim{:ch}, Dim{:spw}, Dim{:data} (1×1×9901)
  :w            Float64 dims: Dim{:ch}, Dim{:spw}, Dim{:data} (1×1×9901)
  :uvdist       Float64 dims: Dim{:ch}, Dim{:spw}, Dim{:data} (1×1×9901)

This will give a complete set of the slice. In the original DimensionalData, this sort of slicing is not generally allowed. Note that the index-based slice of DimStack is all deepcopy and programmatically distinguishable. This is coming from the nature of the original getindex function for DimArray in DimensionalData.jl.

julia> # slice is a deep copy of the original array data
julia> slice[:visibility].data === visds[:visibility].data[:, 4, 100:10000, 2]
false
julia> slice[:visibility].data == visds[:visibility].data[:, 4, 100:10000, 2]
true

Append a DimArray to a DimStack

The package provides the append method to add a DimArray to the given DimStack data set.

EHTDimensionalData.appendMethod
append(dataset::DimStack, array::DimArray)::DimStack

Append a DimArray data into the given DimStack data set. If there is already an array with the same key in DimStack, it will be overwritten by the array newly appended. The newly appended DimArray or other DimArrays inherited from the DimStack data set are programmatically indistinguishable from the original ones.

Examples

julia> # suppose that you add `da::DimArray` with the name of `:newcol` into `ds::DimStack`.
julia> newds = append(ds, da)

julia> # newds is a newly formed `DimStack` because `DimStack` uses `NamedTuple`which is immutable.
julia> newds == ds
false

julia> # The appended `DimArray` or any other `DimArray`s are programmatically indistinguishable.
julia> newds[:newcol] === da
true
julia> newds[:orgcol] === ds[:orgcol]
true
source

Concatenate two DimStacks

The package provides the concat method to concatenate two DimStack data sets.

EHTDimensionalData.concatMethod
concat(dataset1::DimStack, dataset2::DimStack)::DimStack

Concatanate two DimStack data sets. If keys are duplicated, dimarrays of dataset1 will be overwritten. DimArrays in the concatenated DimStack data set are programmatically indistinguishable from those in the original DimStack data sets.

source